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Abstract. The angle-angular momentum quantum phase space is considered and the
corresponding Heisenberg-Weyl gro@ipis studied. When2; + 1) is a power of a prime,
Z(2j+1) is a Galois field and stronger results can be prov&t(2, Z(2j + 1)) transformations

are explicitly constructed and various properties of the displacement operators are studied.
Central extensions of the Abelian group = D|Z(2j + 1) by Z(2j + 1) are studied and

they provide all the ways of constructing the Heisenberg—Weyl g@dmpm G andZ(2; + 1).

1. Introduction

The study of finite quantum systems was initiated a long time ago [1]. More recently this
work has been extended by various authors [2] in various contexts. Work on finite Fourier
transforms [3, 4] is also related to this topic.

In [5] we have studied various aspects of the angle-angular momentum quantum phase
space. Performing a finite Fourier transform on the usual angular momentum states (which
we denote asJ; jm)) we introduce the dual angle states (which we denot@®agm)).
Performing the same Fourier transform on both sides of the angular momentum operators
(J4, J_, J;) we obtain the angle operatof&, , 6_, 6,) which form anSU (2) algebra. In a
similar way as|J; jm) are eigenstates of?, J,, |0; jm) are eigenstates @f, 6,. We have
also introduced displacement operators and the corresponding Heisenberg—Weyl group. The
next step is to studyL(2, Z(2j + 1)) transformations in the angle-angular momentum
guantum phase space. They are the analogue ofSIh@, R) transformations in the
harmonic oscillator context, which lead to Bogoliubov transformations. Important special
cases of theSL(2, Z(2j + 1)) transformations have been explicitly constructed. We have
also used the Chinese remainder theorem to study a factorization @jthel)-dimensional
Hilbert space of our system in terms of other smaller Hilbert spaces of subsystems. We
have shown that every state of the original system can be expressed as a product of states
of the subsystems and every operator acting on the original system can be expressed as a
product of operators which act on the subsystems. In this sense the quantum mechanics of
the original system is factorized into quantum mechanics in smaller subsystems.

In this paper we extend these ideas further. In section 2 we present the basic definitions
and prove some new relations which complement our previous work. In sections 3 and 4
we show that wher{2; + 1) is a power of a prime stronger results can be derived. The
reason for this is that in our calculations we use integes(j + 1) (the integers modulo
2j+1). This is, in general, a commutative ring with a unity and, in the case g 1)
is a power of a prime, a Galois field. The existence of inverses in the Galois case leads to
stronger results. These stronger results are also indirectly applicable to non-Galois systems,
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because they can be factorized in terms of Galois subsystems. In section 3 we construct
explicitly the operators that perform genet®l (2, Z(2j + 1)) transformations on Galois
angular momentum systems. In section 4 we discuss the displacement operators and show
that they are intimately related to the Wigner function.

Let D be the Heisenberg—Weyl group for the angle-angular momen#if®; + 1)
its centre, andG the Abelian groupG = D/Z(2j + 1) that performs displacements in
the angle-angular momentum phase space. In section 5 we consider the deeper question
of whether there are many Heisenberg—Weyl groups that we can build from the Abelian
groupG andZ(2j + 1). Mathematically, this is the problem of central extensiong&;dfy
Z(2j+1) [6,7]. Inthe context of the magnetic translation groups, central extensions have
been studied in [8]. We have also used central extensions in the context of gauge theories
in [9].

We conclude in section 6 with a discussion of our results. In the appendix we give
some formulae which are useful in calculations of matrix elements of the operaidts

2. The J.-0, phase space: a discretized torus

As in our previous work on this problem [5], we denote h¥ jm) the usual angular
momentum statesn belongs toZ(2;j + 1) (the integers modulo 2+ 1). We have shown
that the various formulae are slightly different in the bosonic case (intggieom those in
the fermionic case (half-integg? and in this paper we limit our discussion to the bosonic
case only. The statdd; jm) span the Hilbert spacH (2 + 1). In [5] we have considered
the finite Fourier transform

Up = QRj+ 1) w(mn)|J; jm)(J; jnl (2.1)
. 2na

w(a) = exp[lw} (2.2)

UpUf =UfUr =1 (2.3)

Ug=1. (2.4)

Using these Fourier transforms we have introducedthasis of Euler angle staté; jm)
dual to the usual-basis of angular momentum state’s jm):

165 jm) = Up|J; jm) = (2j + D2 ij w(mn)|J; jn). (2.5)
n=—j
We have also introduced the Euler angle operator®_, 6, which obey theSU (2) algebra:
0, = UpJ U} (2.6)
0y =UpJ Uf 2.7)
6. =UrJ Uy (2.8)
[6,,6.] = +64 [64,6_] = 26.. (2.9)

The 6-operators act on thé-states in an analogous way to thieoperators acting on the
J-states. We have also considered the, phase space which is the discretized torus,

T=Z2j+1)xZ(2j+1) (2.10)
and we have introduced the unitary ‘ladder operators’:

2m
E = —f— 211
exp| i 2710, (241)
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27
F = i—J, 2.12
exp|i 51 (212
E%+l = p2i+l _q (2.13)
EPF* = F*EP w(—ap) a,BeZj+1) (2.14)

which perform displacements along tlieand6, axes, correspondingly:

EP1J; jm) = |J; jm + B) (2.15)
E?10; jm) = w(—pm)|0; jm) (2.16)
F\J; jm) = o(ma)|J; jm) (2.17)
F%\0; jm) = |0; jm + «). (2.18)
Note that
UrEUf =F (2.19)
UrFUS = E* (2.20)
EXIE™ = J, — k1 (2.21)
E*6,E~* =0, (2.22)
Fi,F* =y, (2.23)
F*o,F % =06, — k1. (2.24)

Successive action of the Fourier operaltgr on the states$J/; jm) and|6; jm) gives
\J5 jm) 5105 jm) S5 1 T5 j—m) 55165 j —m) < |T: jm). (2.25)

Successive action of the operatdrs, U;" on the left and right of the operatos, 6, and
E, F gives

%05 % 9 %y, (2.26)
EL L g+ S % (2.27)

The J,, 6, are finite-dimensional matrices and therefore their powers are not all independent.
Using the Cayley—Hamilton theorem of the theory of matrices we can expre$2;thel)-

power of these operators as a linear combination of the lower powers. The eigenvalues of
0, are the integers from-;j to j and the characteristic polynomial is

J
Pe) =x [TG2 —m?) = x¥* x4 (2.28)

m=1

where the above equation defines the integersNote that only odd powers appear in this
polynomial. The Cayley—Hamilton theorem states that

P(6.) = 02 + 1z 167 - 4 a6, = 0. (2:29)

This implies that an ‘arbitrary’ functiorf (6,) is defined modulo the polynomiat(6,) and
therefore it can be reduced to the ‘remainder’ polynorRi@l,) of order 2j. The coefficients
of R(,) can be calculated as follows:

fx) = P(x)Q(x) + R(x)
2j

R(x) =) a,x". (2.30)

n=0
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We insert in this equation the roots #f(x) and obtain a system @R; + 1) equations with
(2j + 1) unknowns:

2j
> aum™ = f(m) m=0,+1, ..., +j. (2.31)
n=0

In this way the functionf (6,) simplifies to the polynomiaR(9,). It is clear that only the
first 2j powers ofd, are independent and all the higher powers are linear combinations of
them. Similar results hold foy, which also hasP(x) as a characteristic polynomial.
Note that the operators,, 6, are defined modulo an integer multiple ¢f; + 1)1.
Indeed, in the equation
j
Jo= Y mlJ; jm)(J; jm| (2.32)
m=—j
m is defined modula2; + 1). If we replacem by m + v(2j + 1) we obtain the operator
J, +v(2j +1)1. An alternative way of seeing this is through the transformations

Wy W]LIW, )] = J. +v2j + D1 (2.33)
where
W) = EV@+D =1 (2.34)

can be viewed as a winding operator on thie-Circle’ of the toroidalJ,—6, phase space.
A similar argument can be given féx in terms of the winding operator

Wy(w) = FY@+D =1 (2.35)
on theéd,-circle of the toroidal/,—0, phase space. Therefore we write symbolically

J, = J; +v(2j + Dl(mod2; + 1)1) (2.36)

0, =0, +w(2j + 1)I(mod2; + 1)1) (2.37)

wherewv, w are integers which can be viewed as winding numbers.

3. Galois quantum systems andSL(2, Z(25 + 1)) transformations

The above results are valid for any integer However, stronger results can be obtained
when (2 + 1) is a power of a prime. In this section we first clarify this point and then
discuss theSL(2, Z(2j + 1)) transformations.

When (2j + 1) is not a power of a prime

2j + 1 p" (3.1)

the Z(2j + 1) is a commutative ring with a unity, which is not a field. Only whej + 1)
is a power of a primep,

2j+1=p" (3.2)

is Z(p™) a field. This is a famous result by Galois and the corresponding fields are called
Galois fields. Form = 1 it is not difficult to see thaZ(p) is a field. Form > 1 the Z(p™)

is a field extension o¥Z(p), of degreem. Its elements can be written as polynomials of
an ‘indeterminate’x with coefficients inZ(p). These polynomials are defined modulo an
irreducible polynomialp(x) of degreem. The use of different irreducible polynomials of
the same degrem leads to finite fieldsZ(p™) which are isomorphic to each other. In this
sense there is only one finite field(p™). Addition and multiplication tables foZ (p™)
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are, in general, difficult to construct, but for practical applications they can be found in

tables. The notatio F (p™) is also used foZ (p™). The advantages of having a field are

related to the fact that in a field all non-zero elements have an inverse which is in contrast

to commutative rings with a unity where the inverse of a non-zero element might or might

not exist. We call Galois quantum systems finite quantum systems with a Hilbert space

whose dimension is the power of a prime (equation (3.2)). In the following we will make

clear which results are general and which are stronger results valid only for Galois systems.
At this point it is relevant to point out that in [5] we have studied the factorization of

a finite system into subsystems. If the dimensi@n + 1) of the Hilbert spaced (2 + 1)

of the system can be factorized as

2j+1=@j1+1) x - x 2jy+1) (3.3)

where any two of these factors are coprime, then we have shown that there exists a unitary
isomorphism betweeH (2j+1) and the product of Hilbert spacés2j,+1) (A =1,..., N)
with dimension(2j; + 1):

H2j+1D) =HQRj1+1) x--x H2jy + 1). (3.4)

Every state inH (2 + 1) is expressed as a product of states in the varid@j, + 1) and
every operator acting upoH (2 + 1) is expressed as a product of operators acting upon
the variousH (2j; + 1). This is very important for our purposes because we can factorize
in a unique way an arbitrar§2; + 1) as

2j+1=pi*...pY (3.5

and, therefore, any angular momentum quantum system can be viewed as a product of
Galois angular momentum subsystems. In this sense all our results concerning Galois
angular momentum systems, through the above factorization, become relevant to all angular
momentum systems.

We now consider the transformations

E —> E' = E°F*

F— F =E"F® (3.6)
whereq, B8, y, § are integers irZ(2j + 1) such that

as — By = L(mod(2j + 1)). (3.7)
These transformations preserve equations (2.13) and (2.14):

(EN?H = (FH% =1 (3.8)

(EV(F)* = (F)*(EN o (—ap). (3.9)

It is easy to show that these transformations form a group which iSIh@, Z(2j + 1))
group. These transformations are the analogue ofSth€, R) transformations in the
harmonic oscillator phase space, which lead to the Bogoliubov transformations:
x'=Ax+kp p = ux+vp
Mk, p,veR A — uk =1, (3.10)
In the Galois case (equation (3.2)) for amyp, y there always exists & which satisfies
equation (3.7):
§= 1A+ By)at (3.11)
In the non-Galois case (equation (3.1)), only for some tripdets, y does there exist &
which satisfies equation (3.7). Of course, a non-Galois system can be factorized in terms
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of Galois subsystems (equation (3.5)) a2, Z(p,*)) transformations can be performed
on each Galois subsystem.

In [5] we have constructed explicitly important special cases ofSth€2, Z(2j + 1))
transformations. Here we construct explicitly the operators corresponding to general
SL(2, Z(2j + 1)) transformations for Galois angular momentum systems. We first consider
the unitary operator

J

T =) o@'m)l:jm)J: jm| (3.12)
m=—j

TTY =TT =1. (3.13)
The powers of this operator

T = Xj: w7 AmA)|J; jm)(J; jm| (3.14)

m=—j

form a subgroup oL (2, Z(2j + 1)). It is easy to show

T*EPT* = EPF*¥ 0w (2710B) (3.15)

[T, F]=0. (3.16)
We now show that an arbitrary element$£ (2, Z(2;j + 1)) can be written as

U, pu,2) =T " UpeTFUFT?. (3.17)
Using equations (2.27), (3.15) and (3.10) we show

E'=UQ, u, VEU (v, u, 1) = E*FPuw(e) (3.18)

F' =U®W, u, VFU (v, u, 1) = EY Few(n) (3.19)
where

=iu—-1 B=viu—v—2A

y=u S=QQ+py)at=p—-1 (3.20)
and

e=2Ywapm — A —v+21r) — 2% n=2"Yuv —3uw). (3.22)

The transformations (3.18), (3.19) are indeed the same as the transformations (3.6) with
the extra phase factors(e), w(n). We can easily solve equation (3.20) so that for given
a, B,y (with o # 0, y # 0) the corresponding, u, v are

w=y r=1+a)y ™t v=(By +a+Day) ™ (3.22)

Note that the inverses do exist in the Galois case studied here. In theycase0,
equation (3.7) givesd = 1 (mod(2; + 1)) and the transformations (3.6) reduce to

E — E“ F— F . (3.23)
This special case has been considered in [5] where we have shown that the operators

J
R@) = ) U jan)(J; jn| (3.24)

n=—j
give
R(@)ER" () = E° (3.25)
R(@)FR"(a) = F* . (3.26)
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In the casexr = 0, equation (3.7) givegy = —1 and the transformations (3.6) reduce to

E — F# (3.27)

F— EF" (3.28)
Clearly in this case the operators

S(B) = R(BHUk (3.29)
give

S(B)ES*(B) = FF (3.30)

S(BYFST(B) = EF . (3.31)

We have, therefore, constructed explicitly operators that perform the transformations (3.6)
in the general case. Clearly these operators can be constructed in many different ways and
here we have presented one of them.
Acting with these operators on theandé states and operators we gEtandé’ states
and operators along different lines in the phase space:
usut=J Uueut =6 i=+,—2z
UlJ; jm) =|J'; jm) Ule; jm) =10"; jm).
They are the Bogoliubov transformations in a discrete context. Note that the phase space
Z(2j+ 1) x Z(2j + 1) is a set of points which form a finite geometry [10] only in the
Galois case in whicli2j + 1) is a power of a prime. In this case it makes sense to talk
about lines and many other geometrical properties. In the non-Galois case the phase space
is just a set of points with no geometrical structure whatsoever. This also indicates why in
the Galois case we get stronger results. The harmonic oscillator phase space methods rely
on the existence of a classical phase space (a plane) that has a geometrical structure. In
the finite quantum systems studied here, only in the Galois case do we have a phase space
with geometrical structure and, as a result of this, we can prove stronger results than in the
non-Galois case.

(3.32)

4. Displacement operators and their properties in the Galois case

We have already introduced displacement operators in section 2 and studied many of their
properties. Here we give some stronger results which are valid in the Galois case only. We
use the notation

D(a, B) = F*EPw(—2"ap) (4.1)
D(a1, B1)D(atz, f2) = D(a + a2, Br + B2 (2 To1 B — 27tz py) (4.2)
D0,00=D(2j+1,0=D0,2j+1)=D(2j+1,2j+1) =1 (4.3)
The 27t is the inverse of 2 and is an integer which always exists in the Galois case considered
here. Note that the displacement operators (4.1) do not have an arbitrary phase factor but a

particular ong(w(—2*aB)). This is crucial for the properties we are going to prove here.
These properties are

Jj
@j+D™ ) D p)=10:j2 ) (0: j — 2 " (44)
p==j
J
@i+ D B)=IJ:j 27 B)(J: j — 27'Bl. (4.5)

oa=—]
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In order to prove equation (4.4) we first show that

J
@j+D7t Y Elo(=27ap) = 10: j — 2 ) (6: j — 2 "al. (4.6)
p=—i

Indeed, taking the matrix elements of both sides of equation (4.6) @ijthm| and|0; jn)
and using equation (2.16) we get
j
Sm.m)2j + D7 D w(—pn—27'ap) = 8(m, —2 )8 (n, —2 "e) 4.7)
p=—i

wheres (m, n) are Kronecker deltas. Equation (4.7) can be proved using the results from the
appendix (equation (A6)). We now act with* on the left of both sides of equation (4.6)
and, using equation (2.18), we obtain equation (4.4). In a similar way we can prove
equation (4.5).

We next introduce the parity operator

j j
Po=UZ= > 10;j—m)0: jm| =Y |J:j—m)(J: jm] (4.8)
m=—j m=—j
PZ=1 (4.9)
We easily see that
QRj+DY D p) =P (4.10)
B
and that
D(a, B)Po = PoD(—a, —P). (4.11)

The displaced parity operator has been studied in the harmonic oscillator context in [11].
It has been shown that it is intimately connected to the Wigner function. Its properties are
similar to those of the Wigner function and its trace with respect to the density matrix of
the system gives the Wigner function. In the present context the displaced parity operator
is defined as

P(a, B) = D(a, B)PoD ™ (ar, B) = D(2ct, 28) Py = PoD ' (20, 2B) (4.12)

where the equalities are proved with the use of equation (4.11). ActingRyitn the right
of both sides of equation (4.4), (4.5) and (4.10) we get

J
@i+ Pa.p) =10: je) (0 jel (4.13)
B=—J
J
@i+ P By =1J; i) Bl (4.14)
a=—j
QRj+DY P@p =1 (4.15)
o,p

If we now define the Wigner function as

W(a, B) = Tr[pP(a, B)] (4.16)
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where p is the density matrix of the systenilrp = 1), we can show through
equations (4.13), (4.14) and (4.15) that
J
@j+D7F )] W p) = (6: jalpl6: jo) (4.17)
B=—j
j
@i+ Wiw B) = (J; jBlplJ; i) (4.18)
a=—j
2j+17t Z W, B) = 1. (4.19)
a.p

There is already an extensive literature on the Wigner functions of finite systems (e.qg.
[12]). Our intention here is not to study them as a problem in their own right, but to show
the connection between their properties and the properties (4.4), (4.5) and (4.10) of the
displacement operators.

We also point out that acting with the operatbraindU *, that performSL (2, Z(2j+1))
transformations on the left and right, correspondingly, of equation (4.13), and using
equation (3.32) we obtain a similar equation to (4.13) but on a different line in the finite
phase space. The ability to perform these transformations is a powerful result which, as we
explained at the end of section 3 is valid only in the Galois case.

5. Central extensions ofG by Z(25 + 1)

We consider the grouf with elements
D(a. B, y) = F*EPw(y). (5.1)

These are the displacement operators of the previous section (but with an arbitrary phase
factor w(y) wherey belongs toZ(2j + 1)). It is clear that

D(as, B1, y1) D(a2, B2, y2) = D(az, B2, y2) D(a1, B1, yD)w(a1f2 — az2B1). (5.2)

Equation (5.2) can also be expressed in terms of the commutatér(ef, 81, y1) and
D(az, B2, y2) as

[D(a1, 1. v1). D(@z, B2. ¥2)] = [D(ea, B1, y)] [D(@z, B2 ¥2)] "
X D(ea, B1, y1) D (2, B2, y2) = o (12 — azf1). (5.3)
We also consider the Abelian group = D|Z(2j + 1) with elements which are the cosets
g, B) = {D(w, B, )| arbitraryy in Z(2j + 1)}
g(a, Br)g(a2, o) = glax + a2, f1+ B2).

The non-commutativity betweeA® and E#, as a result of which we get the phase factor
w(a182 — aB1) in equation (5.2), is essential for quantum mechanics. Here we consider
the question of whether there are many ways of constructing the gpdupm the Abelian
groupG andZ(2j +1). Mathematically this corresponds to studying the central extensions
of G by Z(2j +1).

We consider elements

D(a, B,y) = gla, o(y) (5.5

(5.4)
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with the multiplication rule

D(aa, B1, y1) D(aa, B2, v2) = [g(a1, B (y1)][g(@2, B2)w(y2)]
= glag +ap, B1+ Bw(yL+ v2 + o (a1, B1; a2, B2)). (5.6)

Theo (a1, B1; a2, B2) is called a factor set and is an arbitrary real function restricted by the
associativity rule which implies

o(ay, B1; az, B2) + o (ay + az, B1 + B2; az, B3)
= o (a1, 1; az + as, B2 + B3) + o (a2, B2; az, B3) (5.7)

and also by
0(0,0;, ) =0(c, 8;0,0) = 0. (5.8)

We callD(o) the group related to a given The functioro («y, B1; a2, B2) is a two-cocycle.
The definition of a two-cocycle is

80 = o (o, B1; azf2) + o (a1 + a2, B1 + B2; a3, B3)
—o (a1, B1; az + az, B2+ B3) — o (az, B2 as, f3) =0 (5.9)

and is precisely the associativity requirement (5.7). Heiethe coboundary operator with
the property

82 =0. (5.10)

We call Z%(G, Z(2j + 1)) the group of two-cocycles.
Let z(«, B) be an arbitrary function such that

7(0,0) = 0. (5.11)
Then

o (a1, B1; @z, B2) = (a1, P1) + T(a2, B2) — T(1 + a2, B1 + B2) (5.12)
obeys (5.7), (5.8) and is a special case of a two-cocycle. Itis by definition a two-coboundary:

8t = (a1, f) + 102, B2) — T(1 + @z, f1 + B2). (5.13)
We call B?(G, Z(2j + 1)) the group of two-coboundaries. The two-cohomology group is
H?(G, Z(2j + V) = Z*(G, Z(2j + D)IB*(G, Z(2j + D). (5.14)

Each factoro (a1, B1; a2, B2) (defined modular (a1, B1) + (@, B2) — t(ar + az; B1+ B2))
characterizes a two-cohomology class. More specifically, since the two-coboundary
of equation (5.13) is symmetric under transformaticisg, 1) < (a2, B2), it is the
antisymmetric part ob (a1, B1; a2, B2) that characterizes the cohomology class.

We next consider the commutator of two elementdéé ),

[D(a1, B1, v1), D(az, B2, v2)] = [D(ez, B2, v2)] *
x D (a1, p1, )] [D(e, B1, 1) D(aa, B2, v2)
= w[A(ay, B1; az, £2)] (5.15)

where
Aay, Br; az, B2) = —A(az, B2; a1, f1) = o (a1, B1; @z, f2) — o (a2, B2; a1, B1) (5.16)
is the antisymmetric part of (a1, B1; a2, B2). It is known [6] that for central extensions

[D (a1, B1. Y1) D (@2, B2, ¥2), D(as, B3, ¥3)]
= [D(a1, B1, y1), D(as, B3, va)l[ D(az, B2, v2), D(a3, B3, ¥3)] (5.17)
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and this implies

Alar + az, B1+ B a3, B3) = A(ar, Bi; a3, f3) + Aoz, B2; @3, f3).  (5.18)
Using equations (5.8), (5.16) we prove

A(0,0; @, B) = A(a, 8; 0,0) = 0. (5.19)

Looking at the above properties df(a1, 81; a2, B2) we conclude that it is a multiple of
182 — azpi!

Ao, B1; az, B2) = v(arf2 — azpB1). (5.20)

Similar results in a different context have been derived in [7]. Here, however, the required
periodicity leads to the quantization of More specifically we require that fo, = 2 +1,
B1=0,a2 =0, B2 =1 the commutator of equation (5.15) is equal to one and, therefore,
A(2j +1,0;0,1) takes the valuesV(2j + 1) where N is an integer. Therefore the
antisymmetric part ob (a1, B1; a2, B2) IS

Ao, B1; @z, B2) = N(a1ffz — azp1). (5.21)

As we explained above, this antisymmetric part characterizes the cohomology class to which
o (ay, B1; a2, B2) belongs. Therefore the cohomology classes are labelled by the integer
It is now clear that

o (a1, B1; oo, B2) = N(a1fo — azf1) + t(a1, B2) + t(az, f2) — T(ay + a2, f1 + B2). (5.22)

The ‘z-terms’ can be viewed as ‘gauge transformations'ailf o, are characterized by the
sameN and differentry(a, B8), 12(a, 8) and if the D1(«, B, y) are elements oD(oy) (i.e.
multiply according to the rule), it is easy to see that

Da(a, B, y) = Di(a, B, y) expfi[z2(e, ) — ta(er, B)]} (5.23)

are elements oD (o,) (i.e. multiply according to the rule).

The integerN characterizes the strength of the non-commutativity. The compactness
of the model leads to the result th¥tis an integer. Note that in non-compact models (e.g.
[7]) the analogous parameter is not an integer and is interpreted as one of the constants in
the system (e.g. mass, etc).

6. Discussion and application to other areas

We have considered the angle-angular momentum quantum phase space and studied the
Heisenberg—Weyl group. When(2; + 1) is a Galois field, due to the fact that every non-
zero element has an inverse, stronger results can be proved. We have constructed explicitly
in equation (3.17) generdlL(2, Z(2j + 1)) transformations for Galois systems in terms
of the operatorg” of equation (3.12) and the Fourier operatéfs. We have also studied
the properties of the displacement operators and proved equations (4.4), (4.5) and (4.10).
In section 5 we have explored the most general way of constructing the Heisenberg—Weyl
group from the Abelian grougr = D/Z(2j + 1) andZ(2j +1). We have shown that there
exist many cohomology classes labelled by an integer

The above ideas have been presented in the context of the angle-angular momentum
but they are also relevant in other contexts. In [13] the displacement opeiatars)
of equation (4.1) are used as generators for&b&2; + 1) transformations in the Hilbert
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spaceH (2j + 1). Equation (4.2) leads to the commutator (a different quantity from the
commutator of equation (5.3)):

[D(ay, B1), D(az, B2)] = D(ax, B1) D(az, B2) — D(az, B2) D(at1, B1)

2 (2 — 012,31)] D(ay + az, B1 + B2). (6.1)

= 2isin |:2j 1
Equations (6.1) form the algebra f6U (2 4+ 1). Of special interest in this context is the

limit j — oo in which we get an infinite-dimensional algebra related to area-preserving
diffeomorphisms. In this context we have shown in [5] that we can get a ladder of angle
operatorg);,, (the lowest of which are the angle operatérs 0_, 6, used here), in complete
analogy to the known ladder of angular momentum operatgrgthe lowest of which are

the angular momentum operatofs, J_, J;).

Other areas where the ideas considered in this paper can be applied are the magnetic
translation group for two-dimensional electron systems in magnetic fields [14]; the quantum
Hall effect (e.g. [15]); hydrodynamics [16]; etc. Work on coherent states in truncated
finite Hilbert spaces [17] is also related to this topic. More recently, [18] have discussed
the practical implementation of the transformations in finite quantum systems, with beam
splitters in optical systems. The Galois field aspects studied in this paper could be useful in
implementing coding theory ideas in this context. It is, therefore, clear that there is a very
wide range of potential applications of the ideas expressed in this paper.

Appendix

We introduce here thé,, functions which are the analogues of the delta function and its
derivatives in the harmonic oscillator case. Td)g functions can be useful in practical
calculations of matrix elements. We start with the function

J

do(x) = (2 + D7 ) w(tx) (A1)
t=—j

do(x 4+ 2j 4+ 1) = do(x). (A2)
For x = 0 (modulo 2 + 1) we obtain

do(0) = 1. (A3)
For non-zerax we easily prove

do(x) = 2 + 7t ST (A4)

oLt =14/ sin(Tx/(2j + 1))

We see that

do(x) = do(—x). (AS)

When x takes integer valuesip(x) is one ifx is equal to zero (modulo 2+ 1) and zero
for all other integer values of,

do(n) = 5(n, 0) (A6)

whereé(n, 0) is the Kronecker delta (it is equal to 1 whens equal to 0 modul@2; + 1)).
We now introduce the function

dn(x) = (2] + D7 Xj: <i art )mw(ex) = 3" do(x) (A7)
! N2+t -

dp(x +2j +1) = du(x). (A8)
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Using equation (A5) we prove

dm(_x) = (_1)mdm (X) (Ag)
For x = 0 we get
J o/ m
du(0) = (2j+17* i A10
0 =(2) )4_2_:,<2+1> (A10)
and we easily see that for odd the result is zero,
d+1(0) = 0. (A11)

For everm the result is different from zero. We give the result for the first few even values
of m:

G+ 2m Y
d(0) = — 7 < 2j+1) (A12)
40 = S G+ D@E243) -1 2r ' A13
4()—EJ(1+ )@3j +3j — )(Zj-l-l> ( )
1 4 fd o °
de(0) = EJ(J+1)(3J + 6, 3J+1)<2j+1> . (A14)

Equation (A7) shows that,, (x) is the finite Fourier transform of”, a similar result to the
continuous case whed™ (x) is the Fourier transform of”. Equation (A7) simplifies as
follows:

_ 1 7l \" 27
m =4k — d,(x) = (2j + 1) Zz (2 - 1) cos[wzx} (A15)
— _ -1 e \" . 21
m=4k+1— d,(x)=—2j+1) Zz (2 - 1) sm[wm} (A16)
m=4k 42— dp(x) = —(2j + 1) 122( 2t cos| -2 tx (A17)
1 2j +1
— — ; -1
m =4k +3— dy(x) = (2j + 1) ;2<2j+1> [ ] (A18)

We now prove that for a positive integer

, , , R 2j + 1Y
(J; jkIOZ|T; jO) = (2j + 1) E m'wmk —£) = | —i d,(k —10) (A19)
' i 2
. , NI 2] + 1Y
(05 jk|JI'10; j€) = (2 + 1) E m"wm —k)) = | —i d, (€ — k). (A20)
2

m=—j

References

[1] Weyl H 1950 Theory of Groups and Quantum Mechan{d&ew York: Dover)
Schwinger J 196®roc. Nat. Acad. Sci., USA6 570; 1970Quantum Kinematics and DynamifiNew York:
Benjamin)
[2] Balian R and Itzykson C 1986.R. Acad. Sci303 773
Woottes W K and Field B D 1989Ann. Phys., NY191 363



4288 A Vourdas

(3]

Galetti D and de Toledo-PazA F R 1988149A 267

Ramakrishnan A, Chandrasekaran P S, Ranganathan N R, SantffaBaand Vasudevan R 196P Math.
Anal. Appl.27 164

Santhanm T S and Tekumadl A R 1976Found. Phys6 583

Floratos E 198%hys. Lett.228B 335

Ellinas D 1991J. Mod. Optics38 2393

McClellan J H and RadeC M 1979Number Theory of Digital Signal Processifigew Jersey: Prentice-Hall)

Good | J 1971EEE Trans. CompC20 310

[4] Auslander L and Tolimieri R 1978ull. Am. Math. Socl 847 9

(5]
(6]

(7]

(8]

El
(10]

(11]

(12]

(23]

(14]

(15]

[16]
(17]

(18]

Mehta M L 1987J. Math. Phys28 781

Vourdas A 1990Phys. RevA 41 1653; 1991Phys. RevA 43 1564

Vourdas A and Bendjaballah C 19%3ys. RevA 47 3523

MacLane S 1963Homology(Berlin: Springer)

Kirillov A A 1976 Elements of the Theory of Representat{Berlin: Springer)

Hall M 1959 Theory of GroupgLondon: Macmillan)

Wigner E 1939Ann. Math.40 149

Bargmann V 1954Ann. Math.59 1

Mackey G W 1968Induced Representations of Groups and Quantum MechdNiew York: Benjamin)

Michel L 1962 Group Theoretical Concepts and Methods in Elementary Particle Phgsids Qirsey (New
York: Gordon and Breach) pp 135-200

Lulek T 1992 Acta Phys. PolonA 82 377; 1994Rep. Math. Phys34 71

Florek W 1994Rep. Math. Phys34 81

Lipinski D 1994 Rep. Math. Phys34 97

Walcerz S 199/Rep. Math. Phys34 107

Vourdas A 1987J. Math. Phys28 584

CarmichakR D 1956 Groups of Finite Ordei(New York: Dover)

Hirschfed J W P1979 Projective Geometries Over Finite Fiel@®xford: Oxford University Press)

Grossman A 197€ommun. Math. Phy<l8 191

Royer A 1977Phys. RevA 15 449; 1991Phys. Rev43 44; 1992Phys. Rev45 793

Daubechies | and Grossman A 1980Math. Phys21 2080

Daubechies I, Grossmann A and Reignier J 198Blath. Phys24 239

Englet B G 1989J. Phys. A: Math. Ger22 625

Bishop R F and Vourdas A 199®hys. RevA 50 4488

Woottes W K 1987Ann. Phys., NY176 1

Varilly J C and Garacia-BonaiJ M 1989Ann. Phys., NY190 107

Cohendet O, Combe P, Sirugue M and Sirugue-Collin M 198Bhys. A: Math. Gen21 2875

Leonhardt U 1995°hys. Rev. Letfr4 4101; 1996Phys. RevA 53 2998

Fairlie D B, Fletcher P and ZachdC K 1989Phys. Lett.218B 203

Fairlie D B and Zachs C K 1989Phys. Lett.224B 101

Fairlie D B, Fletcher P and ZachaC K 1990J. Math. Phys31 1088

Brown E 1964Phys. RevA 1331038 1

Zak J 1964Phys. RevA 134 1602; 1964Phys. RevA 134 1607; 1989Phys. RevB 39 694

Wen X G and Niu Q 199(Phys. RevB 41 9377

Martinez J and Stone M 1998t. J. Mod. PhysB 7 4389

Kogan | 1994Int. J. Mod. PhysA 9 3887

Azuma H 1994Prog. Theor. Phys92 293

Abarbanel H and Rouhi A 199Rhys. ReVvE 48 3643

Miranowicz A, Piatek K and Tanas R 19%hys. RevA 50 3423

Opartny T, Buzek V, Bajer J and Drobny G 19B5ys. RevA 52 2419

Torma P and Jex Preprint

Torma P, Jex | and Stenholm S 1996Mod. Opt.43 245



