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Abstract. The angle-angular momentum quantum phase space is considered and the
corresponding Heisenberg–Weyl groupD is studied. When(2j + 1) is a power of a prime,
Z(2j +1) is a Galois field and stronger results can be proved.SL(2, Z(2j +1)) transformations
are explicitly constructed and various properties of the displacement operators are studied.
Central extensions of the Abelian groupG = D|Z(2j + 1) by Z(2j + 1) are studied and
they provide all the ways of constructing the Heisenberg–Weyl groupD from G andZ(2j + 1).

1. Introduction

The study of finite quantum systems was initiated a long time ago [1]. More recently this
work has been extended by various authors [2] in various contexts. Work on finite Fourier
transforms [3, 4] is also related to this topic.

In [5] we have studied various aspects of the angle-angular momentum quantum phase
space. Performing a finite Fourier transform on the usual angular momentum states (which
we denote as|J ; jm〉) we introduce the dual angle states (which we denote as|θ; jm〉).
Performing the same Fourier transform on both sides of the angular momentum operators
(J+, J−, Jz) we obtain the angle operators(θ+, θ−, θz) which form anSU(2) algebra. In a
similar way as|J ; jm〉 are eigenstates ofJ 2, Jz, |θ; jm〉 are eigenstates ofθ2, θz. We have
also introduced displacement operators and the corresponding Heisenberg–Weyl group. The
next step is to studySL(2, Z(2j + 1)) transformations in the angle-angular momentum
quantum phase space. They are the analogue of theSL(2, R) transformations in the
harmonic oscillator context, which lead to Bogoliubov transformations. Important special
cases of theSL(2, Z(2j + 1)) transformations have been explicitly constructed. We have
also used the Chinese remainder theorem to study a factorization of the(2j +1)-dimensional
Hilbert space of our system in terms of other smaller Hilbert spaces of subsystems. We
have shown that every state of the original system can be expressed as a product of states
of the subsystems and every operator acting on the original system can be expressed as a
product of operators which act on the subsystems. In this sense the quantum mechanics of
the original system is factorized into quantum mechanics in smaller subsystems.

In this paper we extend these ideas further. In section 2 we present the basic definitions
and prove some new relations which complement our previous work. In sections 3 and 4
we show that when(2j + 1) is a power of a prime stronger results can be derived. The
reason for this is that in our calculations we use integers inZ(2j + 1) (the integers modulo
2j +1). This is, in general, a commutative ring with a unity and, in the case when(2j +1)

is a power of a prime, a Galois field. The existence of inverses in the Galois case leads to
stronger results. These stronger results are also indirectly applicable to non-Galois systems,
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because they can be factorized in terms of Galois subsystems. In section 3 we construct
explicitly the operators that perform generalSL(2, Z(2j + 1)) transformations on Galois
angular momentum systems. In section 4 we discuss the displacement operators and show
that they are intimately related to the Wigner function.

Let D be the Heisenberg–Weyl group for the angle-angular momentum,Z(2j + 1)

its centre, andG the Abelian groupG = D/Z(2j + 1) that performs displacements in
the angle-angular momentum phase space. In section 5 we consider the deeper question
of whether there are many Heisenberg–Weyl groups that we can build from the Abelian
groupG andZ(2j + 1). Mathematically, this is the problem of central extensions ofG by
Z(2j + 1) [6, 7]. In the context of the magnetic translation groups, central extensions have
been studied in [8]. We have also used central extensions in the context of gauge theories
in [9].

We conclude in section 6 with a discussion of our results. In the appendix we give
some formulae which are useful in calculations of matrix elements of the operatorsJz, θz.

2. The Jz–θz phase space: a discretized torus

As in our previous work on this problem [5], we denote by|J ; jm〉 the usual angular
momentum states.m belongs toZ(2j + 1) (the integers modulo 2j + 1). We have shown
that the various formulae are slightly different in the bosonic case (integerj ) from those in
the fermionic case (half-integerj ) and in this paper we limit our discussion to the bosonic
case only. The states|J ; jm〉 span the Hilbert spaceH(2j + 1). In [5] we have considered
the finite Fourier transform

UF = (2j + 1)−1/2
∑
m,n

ω(mn)|J ; jm〉〈J ; jn| (2.1)

ω(α) = exp

[
i

2πα

2j + 1

]
(2.2)

UF U+
F = U+

F UF = 1 (2.3)

U4
F = 1. (2.4)

Using these Fourier transforms we have introduced theθ -basis of Euler angle states|θ; jm〉
dual to the usualJ -basis of angular momentum states|J ; jm〉:

|θ; jm〉 = UF |J ; jm〉 = (2j + 1)−1/2
j∑

n=−j

ω(mn)|J ; jn〉. (2.5)

We have also introduced the Euler angle operatorsθ+, θ−, θz which obey theSU(2) algebra:

θz = UF JzU
+
F (2.6)

θ+ = UF J+U+
F (2.7)

θ− = UF J−U+
F (2.8)

[θz, θ±] = ±θ± [θ+, θ−] = 2θz. (2.9)

The θ -operators act on theθ -states in an analogous way to theJ -operators acting on the
J -states. We have also considered theJz–θz phase space which is the discretized torus,

T = Z(2j + 1) × Z(2j + 1) (2.10)

and we have introduced the unitary ‘ladder operators’:

E = exp

[
−i

2π

2j + 1
θz

]
(2.11)
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F = exp

[
i

2π

2j + 1
Jz

]
(2.12)

E2j+1 = F 2j+1 = 1 (2.13)

EβFα = FαEβω(−αβ) α, β ∈ Z(2j + 1) (2.14)

which perform displacements along theJz andθz axes, correspondingly:

Eβ |J ; jm〉 = |J ; jm + β〉 (2.15)

Eβ |θ; jm〉 = ω(−βm)|θ; jm〉 (2.16)

Fα|J ; jm〉 = ω(mα)|J ; jm〉 (2.17)

Fα|θ; jm〉 = |θ; jm + α〉. (2.18)

Note that

UF EU+
F = F (2.19)

UF FU+
F = E+ (2.20)

EkJZE−k = JZ − k1 (2.21)

EkθzE
−k = θZ (2.22)

FkJZF−k = JZ (2.23)

FkθzF
−k = θz − k1. (2.24)

Successive action of the Fourier operatorUF on the states|J ; jm〉 and |θ; jm〉 gives

|J ; jm〉 UF→ |θ; jm〉 UF→ |J ; j − m〉 UF→ |θ; j − m〉 UF→ |J ; jm〉. (2.25)

Successive action of the operatorsUF , U+
F on the left and right of the operatorsJz, θz and

E, F gives

Jz
UF→ θz

UF→ −Jz
UF→ −θz

UF→ Jz (2.26)

E
UF→ F

UF→ E+ UF→ F+ UF→ E. (2.27)

TheJz, θz are finite-dimensional matrices and therefore their powers are not all independent.
Using the Cayley–Hamilton theorem of the theory of matrices we can express the(2j + 1)-
power of these operators as a linear combination of the lower powers. The eigenvalues of
θz are the integers from−j to j and the characteristic polynomial is

P(x) = x

j∏
m=1

(x2 − m2) = x2j+1 + µ2j−1x
2j−1 + · · · + µ1x (2.28)

where the above equation defines the integersµi . Note that only odd powers appear in this
polynomial. The Cayley–Hamilton theorem states that

P(θz) = θ2j+1
z + µ2j−1θ

2j−1
z + · · · + µ1θz = 0. (2.29)

This implies that an ‘arbitrary’ functionf (θz) is defined modulo the polynomialP(θz) and
therefore it can be reduced to the ‘remainder’ polynomialR(θz) of order 2j . The coefficients
of R(θz) can be calculated as follows:

f (x) = P(x)Q(x) + R(x)

R(x) =
2j∑

µ=0

aµxµ. (2.30)
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We insert in this equation the roots ofP(x) and obtain a system of(2j + 1) equations with
(2j + 1) unknowns:

2j∑
µ=0

aµmµ = f (m) m = 0, ±1, . . . ,±j. (2.31)

In this way the functionf (θz) simplifies to the polynomialR(θz). It is clear that only the
first 2j powers ofθz are independent and all the higher powers are linear combinations of
them. Similar results hold forJz which also hasP(x) as a characteristic polynomial.

Note that the operatorsJz, θz are defined modulo an integer multiple of(2j + 1)1.
Indeed, in the equation

Jz =
j∑

m=−j

m|J ; jm〉〈J ; jm| (2.32)

m is defined modulo(2j + 1). If we replacem by m + v(2j + 1) we obtain the operator
Jz + v(2j + 1)1. An alternative way of seeing this is through the transformations

[WJ (v)]Jz[WJ (v)]+ = Jz + v(2j + 1)1 (2.33)

where

WJ (v) ≡ Ev(2j+1) = 1 (2.34)

can be viewed as a winding operator on the ‘Jz-circle’ of the toroidalJz–θz phase space.
A similar argument can be given forθz in terms of the winding operator

Wθ(w) ≡ Fw(2j+1) = 1 (2.35)

on theθz-circle of the toroidalJz–θz phase space. Therefore we write symbolically

Jz = Jz + v(2j + 1)1(mod(2j + 1)1) (2.36)

θz = θz + w(2j + 1)1(mod(2j + 1)1) (2.37)

wherev, w are integers which can be viewed as winding numbers.

3. Galois quantum systems andSL(2, Z(2j + 1)) transformations

The above results are valid for any integerj . However, stronger results can be obtained
when (2j + 1) is a power of a prime. In this section we first clarify this point and then
discuss theSL(2, Z(2j + 1)) transformations.

When(2j + 1) is not a power of a primep

2j + 1 6= pm (3.1)

theZ(2j + 1) is a commutative ring with a unity, which is not a field. Only when(2j + 1)

is a power of a primep,

2j + 1 = pm (3.2)

is Z(pm) a field. This is a famous result by Galois and the corresponding fields are called
Galois fields. Form = 1 it is not difficult to see thatZ(p) is a field. Form > 1 theZ(pm)

is a field extension ofZ(p), of degreem. Its elements can be written as polynomials of
an ‘indeterminate’x with coefficients inZ(p). These polynomials are defined modulo an
irreducible polynomialp(x) of degreem. The use of different irreducible polynomials of
the same degreem leads to finite fieldsZ(pm) which are isomorphic to each other. In this
sense there is only one finite fieldZ(pm). Addition and multiplication tables forZ(pm)
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are, in general, difficult to construct, but for practical applications they can be found in
tables. The notationGF(pm) is also used forZ(pm). The advantages of having a field are
related to the fact that in a field all non-zero elements have an inverse which is in contrast
to commutative rings with a unity where the inverse of a non-zero element might or might
not exist. We call Galois quantum systems finite quantum systems with a Hilbert space
whose dimension is the power of a prime (equation (3.2)). In the following we will make
clear which results are general and which are stronger results valid only for Galois systems.

At this point it is relevant to point out that in [5] we have studied the factorization of
a finite system into subsystems. If the dimension(2j + 1) of the Hilbert spaceH(2j + 1)

of the system can be factorized as

2j + 1 = (2j1 + 1) × · · · × (2jN + 1) (3.3)

where any two of these factors are coprime, then we have shown that there exists a unitary
isomorphism betweenH(2j+1) and the product of Hilbert spacesH(2jλ+1)(λ = 1, . . . , N)

with dimension(2jλ + 1):

H(2j + 1) = H(2j1 + 1) × · · · × H(2jN + 1). (3.4)

Every state inH(2j + 1) is expressed as a product of states in the variousH(2jλ + 1) and
every operator acting uponH(2j + 1) is expressed as a product of operators acting upon
the variousH(2jλ + 1). This is very important for our purposes because we can factorize
in a unique way an arbitrary(2j + 1) as

2j + 1 = p
n1
1 . . . p

nN

N (3.5)

and, therefore, any angular momentum quantum system can be viewed as a product of
Galois angular momentum subsystems. In this sense all our results concerning Galois
angular momentum systems, through the above factorization, become relevant to all angular
momentum systems.

We now consider the transformations

E → E′ = EαFβ

F → F ′ = Eγ F δ (3.6)

whereα, β, γ, δ are integers inZ(2j + 1) such that

αδ − βγ = 1(mod(2j + 1)). (3.7)

These transformations preserve equations (2.13) and (2.14):

(E′)2j+1 = (F ′)2j+1 = 1 (3.8)

(E′)β(F ′)α = (F ′)α(E′)βω(−αβ). (3.9)

It is easy to show that these transformations form a group which is theSL(2, Z(2j + 1))

group. These transformations are the analogue of theSL(2, R) transformations in the
harmonic oscillator phase space, which lead to the Bogoliubov transformations:

x ′ = λx + kp p′ = µx + νp

λ, k, µ, ν ∈ R λν − µk = 1. (3.10)

In the Galois case (equation (3.2)) for anyα, β, γ there always exists aδ which satisfies
equation (3.7):

δ = (1 + βγ )a−1. (3.11)

In the non-Galois case (equation (3.1)), only for some tripletsα, β, γ does there exist aδ
which satisfies equation (3.7). Of course, a non-Galois system can be factorized in terms
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of Galois subsystems (equation (3.5)) andSL(2, Z(p
n`

` )) transformations can be performed
on each Galois subsystem.

In [5] we have constructed explicitly important special cases of theSL(2, Z(2j + 1))

transformations. Here we construct explicitly the operators corresponding to general
SL(2, Z(2j + 1)) transformations for Galois angular momentum systems. We first consider
the unitary operator

T =
j∑

m=−j

ω(2−1m2)|J ; jm〉〈J ; jm| (3.12)

T T + = T +T = 1. (3.13)

The powers of this operator

T λ =
j∑

m=−j

ω(2−1λm2)|J ; jm〉〈J ; jm| (3.14)

form a subgroup ofSL(2, Z(2j + 1)). It is easy to show

T λEβT −λ = EβFλβω(2−1λβ) (3.15)

[T λ, F ] = 0. (3.16)

We now show that an arbitrary element ofSL(2, Z(2j + 1)) can be written as

U(ν, µ, λ) = T νUF T µUF T λ. (3.17)

Using equations (2.27), (3.15) and (3.10) we show

E′ ≡ U(ν, µ, λ)EU+(ν, µ, λ) = EαFβω(ε) (3.18)

F ′ ≡ U(ν, µ, λ)FU+(ν, µ, λ) = Eγ F δω(η) (3.19)

where

α = λµ − 1 β = νλµ − ν − λ

γ = µ δ = (1 + βγ )α−1 = µν − 1 (3.20)

and

ε = 2−1(νλµ − λµ − ν + λ) − λ2µ η = 2−1(µν − 3µ). (3.21)

The transformations (3.18), (3.19) are indeed the same as the transformations (3.6) with
the extra phase factorsω(ε), ω(η). We can easily solve equation (3.20) so that for given
α, β, γ (with α 6= 0, γ 6= 0) the correspondingλ, µ, ν are

µ = γ λ = (1 + α)γ −1 ν = (βγ + α + 1)(αγ )−1. (3.22)

Note that the inverses do exist in the Galois case studied here. In the caseγ = 0,
equation (3.7) givesαδ = 1 (mod(2j + 1)) and the transformations (3.6) reduce to

E → Eα F → Fα−1
. (3.23)

This special case has been considered in [5] where we have shown that the operators

R(α) =
j∑

n=−j

|J ; j αn〉〈J ; jn| (3.24)

give

R(a)ER+(α) = Eα (3.25)

R(α)FR+(α) = Fα−1
. (3.26)
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In the caseα = 0, equation (3.7) givesβγ = −1 and the transformations (3.6) reduce to

E → Fβ (3.27)

F → E−β−1
. (3.28)

Clearly in this case the operators

S(β) = R(β−1)UF (3.29)

give

S(β)ES+(β) = Fβ (3.30)

S(β)FS+(β) = E−β−1
. (3.31)

We have, therefore, constructed explicitly operators that perform the transformations (3.6)
in the general case. Clearly these operators can be constructed in many different ways and
here we have presented one of them.

Acting with these operators on theJ andθ states and operators we getJ ′ andθ ′ states
and operators along different lines in the phase space:

UJiU
+ ≡ J ′

i UθiU
+ ≡ θ ′

i i = +, −, z

U |J ; jm〉 ≡ |J ′; jm〉 U |θ; jm〉 ≡ |θ ′; jm〉. (3.32)

They are the Bogoliubov transformations in a discrete context. Note that the phase space
Z(2j + 1) × Z(2j + 1) is a set of points which form a finite geometry [10] only in the
Galois case in which(2j + 1) is a power of a prime. In this case it makes sense to talk
about lines and many other geometrical properties. In the non-Galois case the phase space
is just a set of points with no geometrical structure whatsoever. This also indicates why in
the Galois case we get stronger results. The harmonic oscillator phase space methods rely
on the existence of a classical phase space (a plane) that has a geometrical structure. In
the finite quantum systems studied here, only in the Galois case do we have a phase space
with geometrical structure and, as a result of this, we can prove stronger results than in the
non-Galois case.

4. Displacement operators and their properties in the Galois case

We have already introduced displacement operators in section 2 and studied many of their
properties. Here we give some stronger results which are valid in the Galois case only. We
use the notation

D(α, β) = F αEβω(−2−1αβ) (4.1)

D(α1, β1)D(α2, β2) = D(α1 + α2, β1 + β2)ω(2−1α1β2 − 2−1α2β1) (4.2)

D(0, 0) = D(2j + 1, 0) = D(0, 2j + 1) = D(2j + 1, 2j + 1) = 1. (4.3)

The 2−1 is the inverse of 2 and is an integer which always exists in the Galois case considered
here. Note that the displacement operators (4.1) do not have an arbitrary phase factor but a
particular one(ω(−2−1αβ)). This is crucial for the properties we are going to prove here.
These properties are

(2j + 1)−1
j∑

β=−j

D(α, β) = |θ; j 2−1α〉〈θ; j − 2−1α| (4.4)

(2j + 1)−1
j∑

α=−j

D(α, β) = |J ; j 2−1β〉〈J ; j − 2−1β|. (4.5)
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In order to prove equation (4.4) we first show that

(2j + 1)−1
j∑

β=−j

Eβω(−2−1αβ) = |θ; j − 2−1α〉〈θ; j − 2−1α|. (4.6)

Indeed, taking the matrix elements of both sides of equation (4.6) with〈θ; jm| and |θ; jn〉
and using equation (2.16) we get

δ(m, n)(2j + 1)−1
j∑

β=−j

ω(−βn − 2−1αβ) = δ(m, −2−1α)δ(n, −2−1α) (4.7)

whereδ(m, n) are Kronecker deltas. Equation (4.7) can be proved using the results from the
appendix (equation (A6)). We now act withFα on the left of both sides of equation (4.6)
and, using equation (2.18), we obtain equation (4.4). In a similar way we can prove
equation (4.5).

We next introduce the parity operator

P0 = U2
F =

j∑
m=−j

|θ; j − m〉〈θ; jm| =
j∑

m=−j

|J ; j − m〉〈J ; jm| (4.8)

P 2
0 = 1. (4.9)

We easily see that

(2j + 1)−1
∑
α,β

D(α, β) = P0 (4.10)

and that

D(α, β)P0 = P0D(−α, −β). (4.11)

The displaced parity operator has been studied in the harmonic oscillator context in [11].
It has been shown that it is intimately connected to the Wigner function. Its properties are
similar to those of the Wigner function and its trace with respect to the density matrix of
the system gives the Wigner function. In the present context the displaced parity operator
is defined as

P(α, β) = D(α, β)P0D
+(α, β) = D(2α, 2β)P0 = P0D

+(2α, 2β) (4.12)

where the equalities are proved with the use of equation (4.11). Acting withP0 on the right
of both sides of equation (4.4), (4.5) and (4.10) we get

(2j + 1)−1
j∑

β=−j

P (α, β) = |θ; jα〉〈θ; jα| (4.13)

(2j + 1)−1
j∑

α=−j

P (α, β) = |J ; jβ〉〈J ; jβ| (4.14)

(2j + 1)−1
∑
α,β

P (α, β) = 1. (4.15)

If we now define the Wigner function as

W(α, β) = Tr[ρP (α, β)] (4.16)
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where ρ is the density matrix of the system(Tr ρ = 1), we can show through
equations (4.13), (4.14) and (4.15) that

(2j + 1)−1
j∑

β=−j

W(α, β) = 〈θ; jα|ρ|θ; jα〉 (4.17)

(2j + 1)−1
j∑

α=−j

W(α, β) = 〈J ; jβ|ρ|J ; jβ〉 (4.18)

(2j + 1)−1
∑
α,β

W(α, β) = 1. (4.19)

There is already an extensive literature on the Wigner functions of finite systems (e.g.
[12]). Our intention here is not to study them as a problem in their own right, but to show
the connection between their properties and the properties (4.4), (4.5) and (4.10) of the
displacement operators.

We also point out that acting with the operatorsU andU+, that performSL(2, Z(2j+1))

transformations on the left and right, correspondingly, of equation (4.13), and using
equation (3.32) we obtain a similar equation to (4.13) but on a different line in the finite
phase space. The ability to perform these transformations is a powerful result which, as we
explained at the end of section 3 is valid only in the Galois case.

5. Central extensions ofG by Z(2j + 1)

We consider the groupD with elements

D(α, β, γ ) = FαEβω(γ ). (5.1)

These are the displacement operators of the previous section (but with an arbitrary phase
factor ω(γ ) whereγ belongs toZ(2j + 1)). It is clear that

D(α1, β1, γ1)D(α2, β2, γ2) = D(α2, β2, γ2)D(α1, β1, γ1)ω(α1β2 − α2β1). (5.2)

Equation (5.2) can also be expressed in terms of the commutator ofD(α1, β1, γ1) and
D(α2, β2, γ2) as

[D(α1, β1, γ1), D(α2, β2, γ2)] ≡ [D(α1, β1, γ1)]
−1[D(α2, β2, γ2)]

−1

×D(α1, β1, γ1)D(α2, β2, γ2) = ω(α1β2 − α2β1). (5.3)

We also consider the Abelian groupG = D|Z(2j + 1) with elements which are the cosets

g(α, β) = {D(α, β, γ )| arbitraryγ in Z(2j + 1)}
g(α1, β1)g(α2, β2) = g(α1 + α2, β1 + β2).

(5.4)

The non-commutativity betweenFα andEβ , as a result of which we get the phase factor
ω(α1β2 − α2β1) in equation (5.2), is essential for quantum mechanics. Here we consider
the question of whether there are many ways of constructing the groupD from the Abelian
groupG andZ(2j +1). Mathematically this corresponds to studying the central extensions
of G by Z(2j + 1).

We consider elements

D(α, β, γ ) = g(α, β)ω(γ ) (5.5)
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with the multiplication rule

D(α1, β1, γ1)D(α1, β2, γ2) = [g(α1, β1)ω(γ1)][g(α2, β2)ω(γ2)]
= g(α1 + α2, β1 + β2)ω(γ1 + γ2 + σ(α1, β1; α2, β2)). (5.6)

Theσ(α1, β1; α2, β2) is called a factor set and is an arbitrary real function restricted by the
associativity rule which implies

σ(α1, β1; α2, β2) + σ(α1 + α2, β1 + β2; α3, β3)

= σ(α1, β1; α2 + α3, β2 + β3) + σ(α2, β2; α3, β3) (5.7)

and also by

σ(0, 0; α, β) = σ(α, β; 0, 0) = 0. (5.8)

We callD(σ ) the group related to a givenσ . The functionσ(α1, β1; α2, β2) is a two-cocycle.
The definition of a two-cocycle is

δσ = σ(α1, β1; α2β2) + σ(α1 + α2, β1 + β2; α3, β3)

−σ(α1, β1; α2 + α3, β2 + β3) − σ(α2, β2; α3, β3) = 0 (5.9)

and is precisely the associativity requirement (5.7). Hereδ is the coboundary operator with
the property

δ2 = 0. (5.10)

We call Z2(G, Z(2j + 1)) the group of two-cocycles.
Let τ(α, β) be an arbitrary function such that

τ(0, 0) = 0. (5.11)

Then

σ(α1, β1; α2, β2) = τ(α1, β1) + τ(α2, β2) − τ(α1 + α2, β1 + β2) (5.12)

obeys (5.7), (5.8) and is a special case of a two-cocycle. It is by definition a two-coboundary:

δτ = τ(α1, β1) + τ(α2, β2) − τ(α1 + α2, β1 + β2). (5.13)

We call B2(G, Z(2j + 1)) the group of two-coboundaries. The two-cohomology group is

H 2(G, Z(2j + 1)) = Z2(G, Z(2j + 1))|B2(G, Z(2j + 1)). (5.14)

Each factorσ(α1, β1; α2, β2) (defined moduloτ(α1, β1) + τ(α1, β2) − τ(α1 + α2; β1 + β2))

characterizes a two-cohomology class. More specifically, since the two-coboundary
of equation (5.13) is symmetric under transformations(α1, β1) ↔ (α2, β2), it is the
antisymmetric part ofσ(α1, β1; α2, β2) that characterizes the cohomology class.

We next consider the commutator of two elements ofD(σ ),

[D(α1, β1, γ1), D(α2, β2, γ2)] ≡ [D(α2, β2, γ2)]
−1

×D(α1, β1, γ1)]
−1[D(α1, β1, γ1)D(α2, β2, γ2)

= ω[A(α1, β1; α2, β2)] (5.15)

where

A(α1, β1; α2, β2) = −A(α2, β2; α1, β1) = σ(α1, β1; α2, β2) − σ(α2, β2; α1, β1) (5.16)

is the antisymmetric part ofσ(α1, β1; α2, β2). It is known [6] that for central extensions

[D(α1, β1, γ1)D(α2, β2, γ2), D(α3, β3, γ3)]

= [D(α1, β1, γ1), D(α3, β3, γ3)][D(α2, β2, γ2), D(α3, β3, γ3)] (5.17)
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and this implies

A(α1 + α2, β1 + β2; α3, β3) = A(α1, β1; α3, β3) + A(α2, β2; α3, β3). (5.18)

Using equations (5.8), (5.16) we prove

A(0, 0; α, β) = A(α, β; 0, 0) = 0. (5.19)

Looking at the above properties ofA(α1, β1; α2, β2) we conclude that it is a multiple of
α1β2 − α2β1:

A(α1, β1; α2, β2) = ν(α1β2 − α2β1). (5.20)

Similar results in a different context have been derived in [7]. Here, however, the required
periodicity leads to the quantization ofν. More specifically we require that forα1 = 2j +1,
β1 = 0, α2 = 0, β2 = 1 the commutator of equation (5.15) is equal to one and, therefore,
A(2j + 1, 0; 0, 1) takes the valuesN(2j + 1) where N is an integer. Therefore the
antisymmetric part ofσ(α1, β1; α2, β2) is

A(α1, β1; α2, β2) = N(α1β2 − α2β1). (5.21)

As we explained above, this antisymmetric part characterizes the cohomology class to which
σ(α1, β1; α2, β2) belongs. Therefore the cohomology classes are labelled by the integerN .
It is now clear that

σ(α1, β1; α2, β2) = N(α1β2 − α2β1) + τ(α1, β2) + τ(α2, β2) − τ(α1 + α2, β1 + β2). (5.22)

The ‘τ -terms’ can be viewed as ‘gauge transformations’. Ifσ1, σ2 are characterized by the
sameN and differentτ1(α, β), τ2(α, β) and if theD1(α, β, γ ) are elements ofD(σ1) (i.e.
multiply according to the ruleσ1), it is easy to see that

D2(α, β, γ ) ≡ D1(α, β, γ ) exp{i[τ2(α, β) − τ1(α, β)]} (5.23)

are elements ofD(σ2) (i.e. multiply according to the ruleσ2).
The integerN characterizes the strength of the non-commutativity. The compactness

of the model leads to the result thatN is an integer. Note that in non-compact models (e.g.
[7]) the analogous parameter is not an integer and is interpreted as one of the constants in
the system (e.g. mass, etc).

6. Discussion and application to other areas

We have considered the angle-angular momentum quantum phase space and studied the
Heisenberg–Weyl group. WhenZ(2j + 1) is a Galois field, due to the fact that every non-
zero element has an inverse, stronger results can be proved. We have constructed explicitly
in equation (3.17) generalSL(2, Z(2j + 1)) transformations for Galois systems in terms
of the operatorsT of equation (3.12) and the Fourier operatorsUF . We have also studied
the properties of the displacement operators and proved equations (4.4), (4.5) and (4.10).
In section 5 we have explored the most general way of constructing the Heisenberg–Weyl
group from the Abelian groupG = D/Z(2j +1) andZ(2j +1). We have shown that there
exist many cohomology classes labelled by an integerN .

The above ideas have been presented in the context of the angle-angular momentum
but they are also relevant in other contexts. In [13] the displacement operatorsD(α, β)

of equation (4.1) are used as generators for theSU(2j + 1) transformations in the Hilbert
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spaceH(2j + 1). Equation (4.2) leads to the commutator (a different quantity from the
commutator of equation (5.3)):

[D(α1, β1), D(α2, β2)] ≡ D(α1, β1)D(α2, β2) − D(α2, β2)D(α1, β1)

= 2i sin

[
2π

2j + 1
2−1(α1β2 − α2β1)

]
D(α1 + α2, β1 + β2). (6.1)

Equations (6.1) form the algebra forSU(2j + 1). Of special interest in this context is the
limit j → ∞ in which we get an infinite-dimensional algebra related to area-preserving
diffeomorphisms. In this context we have shown in [5] that we can get a ladder of angle
operatorsθjm (the lowest of which are the angle operatorsθ+, θ−, θz used here), in complete
analogy to the known ladder of angular momentum operatorsJjm (the lowest of which are
the angular momentum operatorsJ+, J−, Jz).

Other areas where the ideas considered in this paper can be applied are the magnetic
translation group for two-dimensional electron systems in magnetic fields [14]; the quantum
Hall effect (e.g. [15]); hydrodynamics [16]; etc. Work on coherent states in truncated
finite Hilbert spaces [17] is also related to this topic. More recently, [18] have discussed
the practical implementation of the transformations in finite quantum systems, with beam
splitters in optical systems. The Galois field aspects studied in this paper could be useful in
implementing coding theory ideas in this context. It is, therefore, clear that there is a very
wide range of potential applications of the ideas expressed in this paper.

Appendix

We introduce here thedm functions which are the analogues of the delta function and its
derivatives in the harmonic oscillator case. Thedm functions can be useful in practical
calculations of matrix elements. We start with the function

d0(x) = (2j + 1)−1
j∑

`=−j

ω(`x) (A1)

d0(x + 2j + 1) = d0(x). (A2)

For x = 0 (modulo 2j + 1) we obtain

d0(0) = 1. (A3)

For non-zerox we easily prove

d0(x) = (2j + 1)−1 sin(πx)

sin(πx/(2j + 1))
. (A4)

We see that

d0(x) = d0(−x). (A5)

Whenx takes integer values,d0(x) is one if x is equal to zero (modulo 2j + 1) and zero
for all other integer values ofx,

d0(n) = δ(n, 0) (A6)

whereδ(n, 0) is the Kronecker delta (it is equal to 1 whenn is equal to 0 modulo(2j +1)).
We now introduce the function

dm(x) = (2j + 1)−1
j∑

`=−j

(
i

2π`

2j + 1

)m

ω(`x) = ∂m
x d0(x) (A7)

dm(x + 2j + 1) = dm(x). (A8)
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Using equation (A5) we prove

dm(−x) = (−1)mdm(x). (A9)

For x = 0 we get

dm(0) = (2j + 1)−1
j∑

`=−j

(
i

2π`

2j + 1

)m

(A10)

and we easily see that for oddm the result is zero,

d2k+1(0) = 0. (A11)

For evenm the result is different from zero. We give the result for the first few even values
of m:

d2(0) = −j (j + 1)

3

(
2π

2j + 1

)2

(A12)

d4(0) = 1

15
j (j + 1)(3j2 + 3j − 1)

(
2π

2j + 1

)4

(A13)

d6(0) = 1

15
j (j + 1)(3j4 + 6j3 − 3j + 1)

(
2π

2j + 1

)6

. (A14)

Equation (A7) shows thatdm(x) is the finite Fourier transform of̀m, a similar result to the
continuous case whereδ(m)(x) is the Fourier transform ofxm. Equation (A7) simplifies as
follows:

m = 4k → dm(x) = (2j + 1)−1
j∑

`=1

2

(
2π`

2j + 1

)m

cos

[
2π

2j + 1
`x

]
(A15)

m = 4k + 1 → dm(x) = −(2j + 1)−1
j∑

`=1

2

(
2π`

2j + 1

)m

sin

[
2π

2j + 1
`x

]
(A16)

m = 4k + 2 → dm(x) = −(2j + 1)−1
j∑

`=1

2

(
2π`

2j + 1
`x

)m

cos

[
2π

2j + 1
`x

]
(A17)

m = 4k + 3 → dm(x) = (2j + 1)−1
j∑

`=1

2

(
2π`

2j + 1

)m

sin

[
2π

2j + 1
`x

]
. (A18)

We now prove that for a positive integern

〈J ; jk|θn
z |J ; j`〉 = (2j + 1)−1

j∑
m=−j

mnω(m(k − `)) =
(

−i
2j + 1

2π

)n

dn(k − `) (A19)

〈θ; jk|J n
z |θ; j`〉 = (2j + 1)−1

j∑
m=−j

mnω(m(` − k)) =
(

−i
2j + 1

2π

)n

dn(` − k). (A20)
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